Semantic Tagging at the Sense Level

نویسندگان

  • Alina Andreevskaia
  • Sabine Bergler
چکیده

This paper summarizes our research in the area of semantic tagging at the word and sense levels and sets the ground for a new approach to text-level sentiment annotation using a combination of machine learning and linguisticallymotivated techniques. We describe a system for sentiment tagging of words and senses based on WordNet glosses and advance the treatment of sentiment as a fuzzy category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Independent Knowledge Sources for Word Sense Disambiguation

Disambiguation Yorick Wilks and Mark Stevenson Department of Computer Science, University of She eld, Regent Court, 211 Portobello Street, She eld S1 4DP, UK fyorick, [email protected] Abstract Sense tagging, the automatic assignment of the appropriate sense from some lexicon to each of the words in a text, is a specialised instance of the general problem of word sense disambiguation. We di...

متن کامل

Sense Tagging: Semantic Tagging with a Lexicon

Sense tagging, the automatic assignment of the appropriate sense from some lexicon to each of the words in a text, is a specialised instance of the general problem of semantic tagging by category or type. We discuss which recent word sense disambiguation algorithms are appropriate for sense tagging. It is our belief that sense tagging can be carried out effectively by combining several simple, ...

متن کامل

Managing Uncertainty in Semantic Tagging

Low interannotator agreement (IAA) is a well-known issue in manual semantic tagging (sense tagging). IAA correlates with the granularity of word senses and they both correlate with the amount of information they give as well as with its reliability. We compare different approaches to semantic tagging in WordNet, FrameNet, PropBank and OntoNotes with a small tagged data sample based on the Corpu...

متن کامل

Corpus-Based Approaches to Semantic Interpretation in NLP

into empirical, corpus-based learning approaches to natural language processing (NLP). Most empirical NLP work to date has focused on relatively low-level language processing such as part-ofspeech tagging, text segmentation, and syntactic parsing. The success of these approaches has stimulated research in using empirical learning techniques in other facets of NLP, including semantic analysis—un...

متن کامل

FAQFinder with sense tagging FAQFinder without sense tagging

Rejection Recall FAQFinder with sense tagging FAQFinder without sense tagging Figure 4: Recall vs. Rejection for FAQFinder with and without WordNet Sense Tagging search. In FAQFinder, sense tagging and calculation of semantic similarity are much more computationally intensive than term vector processing. However, since FAQFinder matches single questions rather than entire documents, the computa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006